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Abstract The standard coupled-cluster (CC) scheme with
single and double excitations in the cluster operator (CCSD)
includes only up to quadruple excitations in the equations.
The CCSD exponential expansion generates, however, all
possible excitations out of the reference function through
products of the cluster operators. Clearly, in all standard
approximate CC approaches only a part of the CC wave func-
tion is used in the equations. If the standard CCSD wave func-
tion is inserted into the energy expectation value expression
then the complete CCSD wave function contributes to the
energy. Such an energy expectation value expression can be
presented as a sum of the standard CCSD energy formula plus
correction terms. The correction terms provide an informa-
tion about the quality of the total CC function. Contributions
associated with the presence of higher than double excita-
tions in the bra CCSD wave function supplement the CCSD
energy obtained within the standard scheme. These contri-
butions can be generated in a sequential way by consider-
ing intermediate excitation levels for the bra CCSD wave
function in the expectation value expression before reaching
the highest excitation level. In this way the importance of
particular components differing in the standard and expecta-
tion value CCSD energies can be investigated. Some of the
contributions can be recognized as close to or identical with
the so-called renormalized noniterative corrections to the CC
methods. We try to see to what an extent the nonstandard
energy expressions, like the energy expectation value or the
asymmetric energy formula, can be used to extend the appli-
cability of the CCSD method illustrating our considerations
with some numerical examples.
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1 Introduction

The single-reference coupled-cluster (CC) method [1-7] has
proved to be very successful in describing nondegenerate
states of atoms and molecules. The basic CC approximation
with singles and doubles (CCSD) usually provides satisfactory
results [§—12]. Having the same number of parameters as the
linear configuration interaction (CI) expansion with singles
and doubles (CISD), the CCSD method by virtue of employ-
ing the exponential ansatz introduces effective approximate
description of higher than single and double excitations
through products of lower excitation-rank cluster operators.
The CCSD equations are obtained by means of the projection
technique and the approach is not variational. As a conse-
quence, the CCSD energy does not provide an upper bound
to the exact energy like the CISD one. On the other hand
the use of the exponential expansion leads to size-extensivi-
ty which is nowadays considered a very important property.
Size-extensivity means a proper scaling of the energy with the
number of particles and is especially important when separa-
tion of a system into noninteracting subsystems or extended
systems are considered. An extension of the CCSD scheme to
include higher than double excitations in the cluster operator
is numerically demanding, so different ways of approximate
accounting for the effect of triple and quadruple excitations in
the cluster operator 7 have been investigated. Noniterative
corrections due to triples (73) have emerged as most suit-
able computational tools in large-scale calculations. While
the simplest form of the correction constituting the CCSD +
T(CCSD) method (also known as CCSD[T]) [13] gives an
approximate but reliable description of contributions from
T3 in nondegenerate cases, the extra term included in the
CCSD(T) scheme [14] permits extending its applicability to
the cases when some moderate degree of quasi-degeneracy
is present.
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Along with the development of the standard single-refer-
ence CC approaches, possible alternative formulations built
upon the exponential ansatz have also been studied. Some
of them have arisen from a requirement that the CC methods
should be both size-extensive and obtained from a variational
principle. These include the normal (NCC) [15], unitary
(UCC) [16,17], expectation value (XCC) [18] and extended
CC (ECC) methods [15]. Some of the proposed energy func-
tionals assume different parameterization for the bra and ket
states which doubles the number of parameters and the num-
ber of coupled-cluster amplitude equations [15], some other
introduce nonterminating series which can pose serious prob-
lems [16-18]. These variational variants of the CC method
are usually so much more complicated than the standard one
that they have never been really competitive (for a more
detailed discussion we refer to Ref. [19]). The interest in var-
iational formulations of the CC method can be easily under-
stood. First, it allows us to take advantage of the generalized
Hellmann—Feynman theorem making analytical gradient and
property calculations easier. Second, if the variational princi-
ple is applied to the symmetric CC energy expectation value
functional then one can expect the CC energy not only to give
the upper bound but also to smoothly approach from above
the exact energy limit with the increasing level of excitations
included in 7. The improved wave function which includes
new parameters must lead to a better energy. This is not what
can always be expected in the case of the traditionally formu-
lated CC method when the inclusion of higher excitation-rank
T operators can make the energy deviation with respect to
the exact full CI (FCI) energy larger, thus the result worse
from the energetic point of view. However, since fully var-
iational CC calculations are so much more tedious than the
conventional ones then up to very recently [20] even results
of benchmark calculations had not been available. This is
the reason why Kutzelnigg [21] has proposed a hierarchy of
approximate CC methods under the name of improved cou-
pled-cluster (ICC) [21] of which the standard CC method is
the first step and which ends with the variational CC scheme.
The first method and the last one in this hierarchy are size-
extensive while this does not necessarily hold for the steps in
between. Kutzelnigg [19] also considers a situation when the
cluster amplitudes do not satisfy any stationary conditions.
In such a case the energy expectation value, which provides
a rigorous upper bound to the exact energy, will give a result
being above the variational energy. If the cluster amplitudes
are taken from the standard CC calculation then the expec-
tation value expression gives the standard CC energy plus
correction terms. According to Kutzelnigg [19] the correc-
tion or, more precisely, the leading term in the correction, can
be used to see how far the standard CC energy is off from an
upper bound and, in this way, to judge its quality.

One of the aspects which can be discussed in this context
is the use of CC wave function within particular approaches.
Focusing on the case with T restricted to singles and dou-
bles it can be noticed that only a part of the CCSD func-
tion that is generated by the exponential expansion is used in
the standard CCSD model. Because of a natural termination

of the expansion only up to quadruple excitations contrib-
ute to the equations. Contrary to that the variational CCSD
method involves the complete CCSD wave function in which
all possible excitations are included. If the energy expecta-
tion value expression is used to determine the energy while
the cluster amplitudes are obtained from the standard CCSD
scheme then the information about contributions from higher
than quadruple excitations is also included in the energy. The
CCSD energy expectation value is above the variational one
and the difference can show the quality of the standard clus-
ter amplitudes compared to those obtained from the varia-
tional principle. On the other hand the difference between
the standard CCSD energy and the CCSD expectation value
energy can indicate to what an extent the Schrodinger equa-
tion with the CCSD wave function is satisfied while pro-
jected on higher than doubly excited determinants. Because
of the limited number of parameters included in the CCSD
wave function the Schrodinger equation is satisfied when the
projection space is restricted to singly and doubly excited
determinants.

Very recently alternative single-reference CC approaches
have also been investigated as a way of extending the appli-
cability of the CC schemes beyond typically single-reference
situations. In general, the standard CCSD(T) method is capa-
ble of accurate description only of a near-equilibrium region
and it usually fails for larger internuclear distances which can
be associated with the growing component of nondynamic
correlation. Several model calculations employing fully var-
iational CCD approach [20] have shown that, in spite of some
improvement over the standard CCD method, the results for
stretched bonds cannot be considered satisfactory. The use
of the method of moments (leading to an asymmetric energy
expectation value-like expression [22]) to correct the CCSD
energy [23-27] has provided more promising results. The
new versions of the standard CC corrections derived from this
expression seem to broaden significantly the range of molec-
ular geometries for which a posteriori corrections can be suc-
cessfully applied. The so-called renormalized and completely
renormalized CC corrections prevent the rapid deterioration
of results given by their standard counterparts when quasi-
degeneracy becomes stronger, thus enabling us to deal more
efficiently with the bond-breaking problem. Let us recall here
that the expectation-value-type expression was already used
while deriving the standard CCSD(T) [14] and CCSD(TQ)
[28] corrections but to keep the connected structure of the
corrections the relaxation effect of the energy was not taken
into account. If this effect is considered in the standard deri-
vations then the renormalized versions can also be obtained,
of course, at the cost of giving up size-extensivity of the
approach [29]. The use of the CCSD expectation value and
the asymmetric energy expression to generate corrections to
the CCSD energy have much in common if one assumes that
construction of the latter is based exclusively on the CCSD
results. Whereas the triple correction cannot be constructed
without a perturbative estimate of 73 and is not present in the
CCSD expectation value corrections, the form of quadruple
corrections is very much the same in both approaches.
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In this paper we try to analyze the problem of correct-
ing the standard CCSD energy. Our considerations are based
on employing the energy expectation value as an alternative
to the standard CCSD energy expression and are illustrated
with some numerical examples involving bond-breaking sit-
uations. We try to see to what extent the alternative energy
expressions can be useful to extend applicability of the sin-
gle-reference CC methods. Let us finally mention that the
attempts to make the single-reference CC methods capable
of describing the states of the multi-reference character are
stimulated by problems which can be faced while applying
genuine multi-reference CC schemes [10]. It seems, however,
that these difficulties can be overcome and a further develop-
ment of the multi-reference CC approaches is required. Such
new formulations of the multi-reference CC methods using
pioneering ideas introduced by Malrieu and his co-workers
[30] have been recently proposed [31-35].

2 Theory

Single-reference CC methods are built on employing the
exponential expansion for the wave function

|¥) =expT|P), (D

where & is usually the Hartree—Fock (HF) determinant and T
the second-quantized cluster excitation operator defined with
respect to the HF function as a Fermi vacuum. The advantages
of this form of the wave function are visible when approxi-
mate schemes are considered which are generated by truncat-
ing T at some excitation level. The most basic approximation
restricts 7' to single and double excitations:

T=T+T. 2
In such a case the Schrodinger equation takes the form
Hy exp(T1 + 12)|®) = E exp(T1 + 12)| ), 3)

where Hy = H — (®|H|®) and E is the electron corre-
lation energy. The exponential expansion generates singly
and doubly excited determinants out of the reference func-
tion @ by the direct action of the T operator and all higher
excitations are created by products of the cluster operators.
The Schrodinger equation (3) cannot be satisfied in the entire
space because of the limited number of parameters (cluster
amplitudes) in the wave function; however, it can be satisfied
in some subspace of the projection space. A natural choice
for this subspace is the space spanned by the HF determinant
and all singly and doubly excited determinants with respect to
it. In such a case the number of unknowns equals the number
of equations. In spite of the fact that such a selection of the

ESXP

projection space is most obvious it should be noted that other
choices for the projection subspace have also been consid-
ered [36]. With the projection space consisting of the HF
determinant and all singly and doubly excited determinants
the standard CC method with singles and doubles (CCSD) is
obtained. The set of CCSD equations reads

1
Eccsp = (®|Hy (T3 + §T12>|<1>>,
(@4 Hye" 2| d) — (&¢|T1|D) Eccsp = 0,
1
(@7 | Hye 21 @) — (@F7|T + ST7|®) Eccsp =0, (4)

where i, j,... and a, b, ... are used to label occulg)ied and
unoccupied spin orbitals in @, respectively. The CIDl.“J.A: - deter-
minant is obtained from the HF one by substituting occupied
spin orbitals i, j, ... with unoccupied a, b, . . . ones. It is not
so difficult to show the cancellation of disconnected contri-
butions to these equations, so the disconnected terms do not
have to be considered in the equations which can be written
in terms of connected quantities:

1
Eccsp = (®|[Hn (T> + ETf)]c|<1>>,

(@ |(Hye)c|®) = 0,
(@) (Hye I T2)c| @) =0, 5)

where ()c stands for the connected part of the operator. It
follows that 7 is a connected operator and, hence, the CC
energy expression is connected as well which is essential for
the size-extensivity of the method.

Itis easy to notice that with the projection space employed
in the standard CCSD approach only a part of the CCSD wave
function, Egs. (1) and (2), can contribute to the equations. The
highest excitation level of wave function contributions to the
energy is two and itrises to three and four when proceeding to
the so-called equations for singles and doubles, respectively.
This is because of the at most two-particle character of the
Hamiltonian. In this way only a part of the CCSD function,
which includes up to quadruple excitations, is represented in
the equations and the remaining part does not influence the
CCSD result. Alternatively it is possible to start with the
CCSD energy expectation value expression

(@] exp(T, + T))Hy exp(Ti + T2)|®)
(@] exp(T, + T,)) exp(Ty + T»)|®)

exp  __
ECCSD -

(6)
and make it stationary with respect to T'. This approach
makes use of the complete CCSD function. A connected form
of Eé’gSD [3] is obtained after cancellation of the normaliza-
tion term in the numerator and the denominator:

(@1 (exp(T + ) Hy exp(Ty + 1)) |19} (@] exp(Ty + T5) exp(Ti + T)| )

CCSD —

= (@] (exp(T + ) Hy exp(Ti + 1)) _|).

(@] exp(T, + T,) exp(T; + T2)|®)

(N
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The connected form is of little practical use if one wants to
calculate Egg)SD exactly since the expansion in powers of
T is infinite. The nonterminating expansion arises from the
necessity of including the so-called exclusion principle vio-
lating (EPV) terms to be able to arrive at the form of the
numerator presented in Eq. (7). The cluster amplitude equa-
tions can be obtained by variation of the connected form of

E(e:)gSD with respect to Tf and T;. Whereas variation with
respect to TlT does not generate disconnected contributions

to the equations, variation with respect to TZJf can produce
disconnected terms. It can be seen, however, that the use of
the set of equations obtained while varying with respect to
T;f in the 75 equations leads to vanishing of the disconnected
contributions. Thus, the method is size-extensive since both
the cluster amplitude equations and the energy expression are
represented by connected terms only. Again, the connected
form of the cluster amplitude equations is expressed via infi-
nite expansions in powers of T, so the usefulness of this form
in practical applications is limited. The connected expression
is, however, important to show that another equivalent form of
the variational CCSD equations, which is not explicitly con-
nected, leads to size-extensivity. This form can be obtained
by requiring that EecxcpSD given by Eq. (6) is stationary with
respect to variations of 7'

(@1X] exp(T, + T,))(Hy — Egpy) exp(Ti 4 T2)|®) = 0,
(k=1,2), ®)

where X} is the excitation operator of the excitation-rank k
with respect to ®. Equations (6) and (8), in spite of their
complexity, can be solved exactly since we do not have to
deal with the nonterminating series. The cancellation of dis-
connected contributions is purely numerical here. Results of
some benchmark calculations based on Eq. (8) have been
recently reported [20]. The calculations were done by explor-
ing some of the possibilities given by modified FCI codes.
In general, in the fully variational CC methods not only
are the stationary conditions complicated coupled equations
but even the evaluation of Egg)SD isalso very tedious [37]. Be-
cause of that some hierarchies of approximations which start
with the standard CCSD scheme in the first step and end with
the fully variational CCSD method have been suggested. One
of them, the improved coupled-cluster (ICC) method [21],
starts from the asymmetric expectation-value-like expression

g (@l T")Hy exp(T)|®)
- , ©9)
(@|(1+ TT) exp(T)|®)

then goes via

t4Llpt?
o (Pl +T + 3T )ZHN CXP(T)|<D)’ (10)
(@11 +TT + ST exp(T)| D)

etc., to finally reach the full expectation value expression.
The T equations are obtained by varying energy with respect
to 7. The first method in this hierarchy can be easily recog-
nized as the normal CCSD method [15]. Another form which
has been suggested to see a relation between the expectation
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value and the traditional CC energy [19] is
o — Eoe 1 (DIAHNI®) (11
exCC CcC (D|A|D) P
where
A = exp(T") exp(T), (12)

Hy = exp(=T)H exp(T) —(®| exp(—T) H exp(T)|®),
(13)

and T is taken from the standard CC calculation. If T is
restricted to singles and doubles and is obtained within the
standard CCSD scheme then Eq. (11) gives

(DI HYP @)

Eexcesp = Eccsp + Z (D|AL|D)
0

; (14)

where the superscript 12 indicates that 7 is restricted to sin-
gles and doubles and the Ay is used for the k particle compo-
nent of A. The second term on the right hand-side represents a
correction which must be added to the standard CCSD energy
to arrive at the expectation value energy. It has been suggested
that evaluation of the leading term in the correction should
be used to obtain an estimate of how far the standard CCSD
energy is off an upper bound limit to judge the quality of the
CCSD result [19]. However, Eq. (14) is not very convenient
for the purpose of systematic study one can make in practice.
The reason is that Ay is represented by an infinite expan-
sion in powers of T, thus the fact that A can be restricted
to k = 6 in the numerator does not introduce a significant
simplification. More suitable form can be obtained from

Eexccspix)
(@ exp(T,| + Ty ) PcHy exp(Ti + T»)|®)
(@] exp(T) + T)) Pi exp(Ty + T2)|®)
(@] exp(T, + T,) Pc(Hy — Eccsp) exp(Ty + T2)|®)
(@l exp(T, + T;) Pcexp(Ti + T2)|®)

= Eccsp +
(15)
where
P = [@)(®] + D |0 ) (@]

N Z |q>?11 .......... i Zk>(®?1l,’......,’izk ) (16)
It follows that
Eccsp = EexccsD(2)
Eexcesp = EexccsDN)» (17

where N is the number of electrons. Here the correction to
Eccsp can be expressed in terms of increasing excitation
level k admitted by the projection operator Py and can be
computed. The hierarchy of exCCSD(k) schemes may also be
employed to discuss some specific features of the asymmet-
ric energy expression in which the CCSD results are exclu-
sively used. Such an approach has been recently proposed and
intensively studied [23,22]. The asymmetric energy expres-
sion is obtained by projecting the Schrodinger equation on
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some function x having a nonzero overlap with the wave

function W

o _ HNY) s
(x1¥)

If one of the functions, y or W, is exact then E is the exact

energy regardless of the quality of the other function. The

simplest choice for the x function is the HF determinant .

This choice gives the standard energy expression

E = (Q[Hy|V), 19)
where the intermediate normalization for W ((®|W) = 1) is
assumed. Considering more complex projection functions as
an alternative to ® in the energy expression (18) does not
make too much sense when W is the exact wave function.
It follows that in practice both, x and W must be approxi-
mate. Let us assume that the standard coupled-cluster func-
tion is used for W with T truncated at some excitation level
i. The cluster amplitudes T are obtained from projecting the
Schrodinger equation on determinants of the excitation level
up to i. One may say that the Schrodinger equation with such
a wave function is satisfied in the projection space spanned
by @ and determinants of excitation level up to i. The situ-
ation is analogous to that in the case when W is exact in the
sense that as long as x belongs to the standard CC projection
space the asymmetric energy expression gives the standard
CC energy and again the use of more complicated form of x
than the HF determinant does not make any sense. In order to
obtain other than the standard CC energies, x must contain
a component from the orthogonal complement of the pro-
jection space. Let us note that by replacing the standard bra
function ® with such a x the additional components in the ket
CCSD function are also included, so in this way the energy
expression benefits from the extension of both the bra and
ket functions. Obviously the same concerns the exCCSD(k)
scheme. The yx functions can be obtained in different ways.
First, they can be provided by some external source [22]. This
however, requires performing calculation using a method in
which the wave function includes a description of some com-
ponent from the orthogonal complement of the CC projec-
tion space. The resulting energies are difficult to interpret.
One may say that, in some sense, they contain a combined
effect of the y and W functions. If one assumes that, in order
to keep the computational cost low, the x function should be
obtained by means of some simple and numerically inexpen-
sive method then the question is to what extent the combined
effect of two functions poorly describing the system can lead
to a high-quality energy using Eq. (18).

The other option which can be considered while making
choices for x is to resign from the external source and base
the construction of x on results contained in the CC wave
function W. Assuming the CCSD approximation

(x|Hy exp(Th + 12)|P)
(xlexp(T1 + T2)|P)
(x|(Hy — Eccsp) exp(T1 + 12)| D)
= Eccsp + .
(xlexp(T1 + T2)|P)
one can see that this is possible because the CCSD expansion
produces higher than double excitations. One can select the

(20)

most important contributions to x by applying an analysis
based on the single-reference perturbation theory. It can be
seen that the CCSD expansion produces the lowest order con-
tributions to the even-level excitations, while this is not the
case for the odd-level excitations. This is because the lowest
order even-level excitations are represented by products of
T» while for the odd-level excitations the lowest order terms
are contained in 73, 7> T3, etc. Perturbation theory allows us
to build the lowest order estimates of 73, 7> 73, etc., so they
can be used in the x function. The simplest choice for the x
function would be

1
1x) :[1+T1+§T12+T2+R3(VNT2)]|<D>, 1)

where R3() projects on triply excited determinants and asso-
ciates the standard Mgller—Plesset energy denominator. If x
of this form [with (1 /2)T12 neglected] is inserted into Eq.
(20) then the so-called completely renormalized CCSD[T]
(CR-CCSDIT]) method is obtained [23]. The leading term
in the numerator is identical with the CCSD|[T] correction
so if only this term is included then we have the renormal-
ized CCSDI[T] (R-CCSD[T]) correction. Similarly the CR-
CCSD(T) and R-CCSD(T) methods can be derived and we
refer to Ref. [23] for more detailed description. With cor-
rections for quadruples the situation is simpler since that
concerns the even-level excitations and the lowest order qua-
druple excitations are given by (1/2) T22. Because of that the
leading term in the quadruple correction arising from Eq.
(20) [methods R-CCSD(TQ) and CR-CCSD(TQ)] is iden-
tical with that in exCCSD(4), Eq. (15). It is worth noting
here that, unlike the CCSD(TQ) correction to the CCSD en-
ergy, the CR-CCSD(TQ) correction contains disconnected
contributions. Of course, the same concerns the exCCSD(4)
scheme.

The use of single-reference perturbative arguments while
constructing y functions within the CR-CCSD(T) and CR-
CCSD(TQ) approaches suggests that the applicability of both
corrections should be rather restricted to the single-
reference situations. In spite of that, the corrections have
been successfully tested in the presence of strong quasi-
degeneracy. In typically single-reference situations the CR-
CC corrections perform slightly worse than their standard
counterparts but they behave much better in quasi-degener-
ate situations. While the standard corrections break down
when the degree of quasi-degeneracy is getting high, the R-
CC and CR-CC corrections usually do not follow this pat-
tern of behavior and still provide energies quite close to the
FCI ones [23,24]. This is mainly because of the presence
of the denominator in Eq. (20). This behavior of the R-CC
and CR-CC corrections is quite surprising and difficult to ex-
plain. As mentioned, formula (18) gives the exact energy if
one of the functions, y or W, is the exact one. In the CR-
CC corrections none of them can be considered close to FCI
when describing quasi-degenerate states. Their quality de-
pends on the quality of cluster operators which is definitely
poor in such a case. Cluster expansions can be successfully
applied when the so-called cluster conditions are satisfied. In
quasi-degenerate situations neither the cluster conditions are
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fulfilled nor the perturbative estimate of 73 can be considered
reliable. Thus, the question is whether by using some alterna-
tive energy expressions the applicability of CCSD methods
can be really extended to quasi-degenerate states when rely-
ing exclusively on the CCSD results and on the single-ref-
erence perturbative analysis of the cluster amplitudes whose
validity can be questioned in such a case. One of the aspects
of this problem is the importance of particular contributions
to the energy expressions. It should be noted that the cluster
amplitudes can be large, so it is hard to say that terms which
are not included in the corrections and which are higher in
powers of T can be neglected. It seems that their significance
increases with the growing degree of quasi-degeneracy, so
they should be taken into account.

To study the problem the CCSD expectation-value-like
expression, Eq. (15), can be useful especially if applied in
cases when contributions corresponding to the even-level
excitations in the bra function play a dominant role. Such
excitations are normally well represented in the CCSD expan-
sion, so the correction terms appearing in Eq. (15) and the
corresponding contributions generated by the CR-CCSD cor-
rections are very close. In the following section results of such
model calculations are presented and discussed.

3 Results

Exploring the possibilities given by advanced FCI programs
it is relatively easy to successively calculate the correction
terms to the CCSD energy generated by increasing value
of k in exCCSD(k), Eq. (15), to finally reach the exCCSD
energy. Of course, the use of FCI code limits the size of basis
sets which can be used so the standard STO-3G basis sets
are employed in the calculations. Our calculations are per-
formed for the nitrogen molecule, acetylene and two ionized
systems, NOT and CN~, for geometries corresponding to the
bond length ranging from 0.9 A to more than 2 A. The larg-
est internuclear distance considered in the calculation for a
particular system reflects our ability to obtain convergence in
the Hartree—Fock calculations. Since general tendencies are
quite visible for geometries which are reported we did not
put an additional effort to go beyond these distances.

The N, molecule is frequently used to test the perfor-
mance of different kinds of methods in describing potential
energy surfaces. Our results for N, are shown in Table 1.
The reference point for results obtained within approximate
schemes is the FCI energy, so energies given by methods
other than FCI are reported through their deviation from FCI
[in mhartree, ex(k) stands for exCCSD(k)]. The k index in
exCCSD(k) method runs from & = 2 to k = 6 which is the
highest excitation level allowed in the N, model considered.
The k =2 case gives, of course, the CCSD energy. It can be
seen from the entries of Table 1 that extensions of the projec-
tion from P, to P3 and from P4 to Ps do not bring significant
changes to the exCCSD(k) energies and that seems to indicate
that unlinked triples and pentuples do not play an important
role in the CCSD wave function. This is definitely not the

case when the even-level excitations, quadruples and sextu-
ples, are considered in the bra function. For the internuclear
distance R between 0.9 and 1.4 A the main contribution to the
energy expectation value is associated with inclusion of the
quadruples whereas the sextuple contribution is negligible.
The energy deviation of exCCSD(4) from CCSD is getting
larger while increasing R and that, in accordance with the
Kutzelnigg postulate, can be used as a measure of the quality
of the standard CCSD approach. The exCCSD(4) scheme can
also be used to introduce a correction to the CCSD energy
as done in the CR-CC approaches since up to R = 1.8 A it
quite effectively reproduces the full exCCSD results. The ex-
CCSD results for this region represent an improvement over
the CCSD ones reducing the CCSD deviation from the FCI
energy. However, for larger values of R the exCCSD(4) cor-
rection is no longer a scheme which includes the leading term
(using Kutzelnigg’s terminology [19]) because projection on
sextuples also gives a significant contribution to the exCCSD
energy and, thus, relying on the result given by exCCSD(4)
is no longer justified. The quality of the CCSD results deteri-
orates rapidly and the CCSD function cannot be considered
as a reliable source of information for constructing any type
of correction. Indeed, the exCCSD energy gap, which can be
used as a measure of the quality of the CCSD wave func-
tion, increases significantly for R > 1.7 A. Let us recall here
that the expectation value expression gives an upper bound
to the exact energy, so the rising value of the exCCSD en-
ergy with respect to the exact one means the lower quality of
the CCSD function. This situation is pictured in Fig. 1. The
CCSD method breaks down completely around R = 1.7A
and the exCCSD energies, which are only slightly above the
FCIones for R < 1.7 A, are rapidly going up reflecting a sud-
den deterioration of the quality of the CCSD function. The
exCCSD(4) and exCCSD potential energy curves, being very
close up to R = 1.7 A, split showing the importance of the
additional correction terms generated by exCCSD(6) (equiv-
alent to exCCSD). It is worth noting that the exCCSD(4)
energies continue to be very close to the FCI ones mak-
ing an impression that the method is capable of providing
a good approximation to the FCI energies even in cases of
complete breakdown of the CCSD scheme. Of course, this
can happen when the bra function is arbitrarily truncated at
some excitation level and, in this way, contributions which
are not negligible are eliminated. The truncation which can
be justified for R < 1.8 A is not legitimate for larger R val-
ues. This indicates that one should be rather very careful
while manipulating with terms which can be potentially of
great importance. Values of cluster amplitudes become large
in the quasi-degenerate situations, so there is no longer any
justification for neglecting terms which are large in powers
of T, they become important.

Our results for the HCCH molecule with the H-C bond
fixed at 1.08 A are presented in Table2. Again the inclusion
of the odd-level excitations in the bra function in exCCSD(k)
brings very little changes. Up to the C—C bond length of 1.7 A
the leading term in the correction is provided by the projec-
tion on quadruples and well reproduces the exCCSD energy.
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Table 1 The FCI energies (in a.u.) of the ground state for N, obtained with the STO-3G basis set

R (A) FCI CCSD ex(3) ex(4) ex(5) exCCSD
0.9 -107.293076 1.702 1.711 1.246 1.246 1.243
1.0 —107.549302 2.578 2.598 1.688 1.689 1.681
1.1 —107.654123 3.925 3.966 2.296 2.298 2.276
1.2 —107.677340 5.901 5.974 3.126 3.132 3.078
1.3 —107.659370 8.542 8.659 4.188 4.199 4.076
1.4 —107.623175 11.530 11.697 5.328 5.348 5.087
1.5 —107.581636 13.776 13.980 6.131 6.163 5.634
1.6 —107.542086 12.734 12.936 6.129 6.173 5.184
1.7 —107.508729 3.766 3.889 5.677 5.715 4.504
1.8 —107.483458 —19.532 —19.598 6.024 5.994 8.807
1.9 —107.466114 —59.428 —59.428 6.446 6.258 28.307
2.0 —107.455156 —101.829 —102.445 2.883 2.546 56.967
2.1 —107.448633 —135.738 —136.466 —4.750 —5.139 78.203
Results of other methods are given in mhartree relative to the FCI energies

Table 2 The FCI energies (in a.u.) of the ground state for HCCH obtained with the STO-3G basis set

R(A) FCI CCSD ex(3) ex(4) ex(5) ex(6) ex(7) ex(8) ex(9) exCCSD
0.9 —75.612199 0.739 0.742 0.464 0.464 0.457 0.457 0.457 0.457 0.457
1.0 —75.871739 1.091 1.093 0.598 0.598 0.585 0.585 0.585 0.585 0.585
1.1 —75.990613 1.656 1.658 0.816 0.816 0.790 0.790 0.790 0.790 0.790
1.2 —76.025787 2.503 2.505 1.144 1.144 1.098 1.098 1.098 1.098 1.098
1.3 —76.013095 3.661 3.662 1.595 1.595 1.517 1.517 1.516 1.516 1.516
1.4 —75.975029 5.016 5.014 2.134 2.134 2.008 2.008 2.007 2.007 2.007
1.5 —75.925649 6.116 6.106 2.633 2.631 2.448 2.448 2.446 2.446 2.446
1.6 —75.873695 5.844 5.818 2.941 2.935 2.731 2.731 2.728 2.728 2.728
1.7 —75.824461 2.138 2.075 3.331 3.316 3.360 3.359 3.359 3.359 3.359
1.8 —75.780845 —7.630 —7.769 5.131 5.093 6.546 6.544 6.567 6.567 6.567
1.9 —75.744003 —25.318 —25.611 9.673 9.586 16.195 16.188 16.303 16.303 16.303
2.0 —75.713956 —51.038 —51.603 15.652 15.473 35.754 35.737 36.111 36.111 36.113
2.1 —75.690136 —82.441 —83.419 19.374 19.041 64.527 64.491 65.361 65.361 65.365
22 —75.671737 —114.575 —116.077 18.138 17.577 94.669 94.606 96.109 96.109 96.116
2.3 —75.657866 —142.871 —144.962 12.441 11.591 117.800 117.706 119.806 119.806 119.816

Results of other methods are given in mhartree relative to the FCI energies

The quality of the CCSD function gets poorer with increas-
ing values of R but the CCSD energy can be to a large extent
improved by adding the exCCSD(4) correction. However, for
R > 1.7 A the CCSD method breaks down. The CCSD ener-
gies significantly overestimate the exact ones and the poor
quality of the wave function provided by the CCSD scheme
is reflected by the CCSD energy expectation values being
higher and higher above FCI energies while increasing R. In
spite of that, the exCCSD(4) energy stays close to the FCI
one, so the pattern of its behavior, which can be seen in Fig. 2,
is similar to that for N.

Results for two ionized systems, NO* and CN—, are
reported in Tables 3 and 4, and shown in Figs. 3 and 4, respec-
tively. One can observe that changes introduced by
projections on triples and pentuples are not so small as they
were for No and HCCH; however, again we would like to
concentrate on results given by CCSD, exCCSD(4) and ex-
CCSD. As can be seen from Figs. 3 and 4, for a long range of
the internuclear distance, energies given by the three meth-
ods are very close so they practically form one curve. For
larger R values (> 1.6A for NOT and > 1.8A for CN™)
they split to create three well-separated curves. In both cases

the CCSD potential energy curves display an artificial hump
and this kind of behavior is repeated by the exCCSD(4) and
exCCSD curves. After that the CCSD curve is rapidly going
down while the exCCSD curve goes up increasing the dis-
tance from the FCI one. Surprisingly, while the CCSD and
exCCSD energy gap relative to FClis growing the exCCSD(4)
results are again located very close to the exact ones.

Our results show that the CCSD expectation value method
can improve the standard CCSD energy when the CCSD
method provides sufficiently accurate results and good
approximation to the exact wave function. Using a perturbat-
ive analysis one can identify the leading correction term in
exCCSD(4) giving an estimate of the difference between
CCSD and exCCSD energy. In more general approaches one
can also rely on perturbative estimates of connected triples as
long as the use of perturbation theory arguments is justified.
This is definitely not the case when a significant contribution
of nondynamic correlation is present. If the standard CCSD
method breaks down then the use of the expectation value
expression does not help since the description given by the
CCSD wave function is not reliable. It can happen, how-
ever, that by ignoring the fact that we have quasi-degenerate
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Table 3 The FCI energies (in a.u.) of the ground state for NO™ obtained with the STO-3G basis set

R (A) FCI CCSD ex(3) ex(4) ex(5) exCCSD
0.9 —127.025789 2910 3.229 2.590 2.597 2.592
1.0 —127.278458 4.744 5.506 4.226 4.249 4.235
1.1 —127.383797 7.650 9.282 6.890 6.958 6.918
1.2 —127.412255 12.019 15.140 11.005 11.175 11.074
1.3 —127.402780 18.178 23.517 16.925 17.289 17.060
14 —127.376476 26.308 34.595 24.880 25.556 25.082
1.5 —127.344738 36.847 49.257 35.821 37.004 36.103
1.6 —127.313767 51.871 75.219 58.110 61.557 59.804
1.7 —127.286554 67.623 115.945 107.855 123.387 118.909
2.0 —127.228486 —101.745 —111.992 19.131 13.664 83.408
2.1 —127.214678 —133.053 —150.103 12.810 2.143 108.170

Results of other methods are given in mhartree relative to the FCI energies

Table 4 The FCI energies (in a.u.) of the ground state for CN™ obtained with the STO-3G basis set

R (A) FCI CCSD ex(3) ex(4) ex(5) exCCSD
0.9 —90.681351 1.461 1.551 1.245 1.246 1.245
1.0 —90.938300 2.192 2.398 1.833 1.837 1.833
1.1 —91.051308 3312 3.753 2.753 2.766 2.756
1.2 —91.082902 4.984 5.853 4.166 4.198 4.175
1.3 —91.070334 7.376 8.949 6.245 6.318 6.267
14 —91.035673 10.630 13.242 9.140 9.287 9.183
1.5 —90.991778 14.807 18.793 12.917 13.186 12.985
1.6 —90.945986 19.851 25.434 17.514 17.949 17.581
1.7 —90.902419 25.672 32.845 22.830 23.438 22.808
1.8 —90.863334 33.011 41.926 29.751 30.516 29.524
1.9 —90.829775 45.787 60.996 45.583 47.693 46.097
2.0 —90.801830 61.595 93.788 82.361 92.338 88.767
2.3 —90.744386 —86.941 —93.674 15.522 12.022 67.152
2.5 —90.720480 —133.075 —149.094 4.635 —6.371 101.507

Results of other methods are given in mhartree relative to the FCI energies

situation and using a scheme whose validity is restricted to
single-reference cases, results incidentally close to the ex-
act ones can be obtained. This makes an impression that by
using alternative energy expressions a single-reference CC
approach is capable to deal efficiently with a multi-reference
situation. In our calculations such an example is given by the
exCCSD(4) scheme which, by being somewhere between
CCSD and exCCSD, gives energies close to the FCI ones.
This is, of course, because of neglecting some important con-
tributions appearing in the exCCSD expression.

There is no doubt that it would be nice to have a sin-
gle-reference method whose applicability would be extended
beyond typically single-reference cases. It is, however, hard
to believe that there is a way of a posteriori correcting a
method which gives completely wrong results relying only
on information coming from these results. It seems more
sensible to employ a single-reference scheme in which an
additional information about nondynamic correlation coming
from some external source is effectively introduced [38—45].

4 Conclusion

In this paper we have tried to see to what extent the appli-
cability of the standard CCSD schemes can be extended.

In view of significant problems associated with the use of
multi-reference CC methods and many-body perturbation
theories, making the single-reference CC approaches more
efficient in dealing with quasi-degenerate situations may seem
very attractive. We investigate possibilities given by employ-
ing the CCSD energy expectation value expression. The
scheme has been advocated by Kutzelnigg perhaps not as a
way of improving the standard CCSD method but at least as a
way of checking the quality of the CCSD results. A hierarchy
of the exCCSD(k) schemes similar to that suggested by Kut-
zelnigg can be used to show the importance of particular com-
ponents contributing to the CCSD energy expectation value.
Our results indicate that when the CCSD description is suffi-
ciently accurate then the information contained in the CCSD
wave function can be successfully used for a further improve-
ment of the CCSD energy. However, in multi-reference cases
when the CCSD scheme breaks down the information about
the wave function provided by CCSD is not reliable and
therefore any single-reference estimate used for construct-
ing the correction terms based on the CCSD result either.
The terms which can be considered most important in the
single-reference cases are usually not the leading ones when
the quasi-degeneracy is present since other terms, which can
be neglected when the CCSD method performs well, can
give quite large contributions in such a situation. These terms
usually contain high powers of 7 and, since the cluster
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amplitudes can be large trying to describe a significant com- contributions are neglected by including only low-level exci-
ponent of nondynamic correlation, they must be taken into tations in the bra CCSD function then the resulting scheme
consideration. As our calculations show, if these important can incidentally provide energies very close to the FCI ones.
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The exCCSD(k) scheme can be considered as a special
case of slightly more general approach employing the asym-
metric energy expression in which the CCSD results are
exclusively used. Since both approaches are essentially based
on the same idea, our findings to a large extent also concern
the R-CC and CR-CC corrections. It follows from our study
that it is rather difficult to expect that in cases of the com-
plete breakdown of the CCSD method the CCSD energy can
be effectively a posteriori corrected by using alternative en-
ergy expression. More extensive use of the CCSD wave func-
tion cannot help when the CCSD description is not reliable.
Methods which combine a multi-reference type of scheme
and a single-reference CC approach look more promising;
however, in our opinion an additional effort should also be
put in developing multi-reference CC and MBPT methods.
Several such attempts based on the concept of intermediate
Hamiltonian introduced by Malrieu and his co-workers [30]
have been recently made.

References

Coester F (1958) Nucl Phys 7:421

. Coester F, Kiimmel H (1960) Nucl Phys 17:477

Cizek J (1966) J Chem Phys 45:4256

. Cizek J (1969) Adv Chem Phys 14:35

Cizek J, Paldus J (1971) Int J Quantum Chem 5:359

. Paldus J, Cizek J, Shavitt T (1972) Phys Rev A 5:50

Cizek J, Paldus J (1973) In: Smith DW, McRae WB (eds) Energy,

structure and reactivity. Wiley, New York, p 198

Bartlett RJ (1981) Annu Rev Phys Chem 32:359

9. Bartlett RJ, Dykstra CE, Paldus J (1983) In: Dykstra CE (ed) Ad-

vanced theories and computational approaches to the electronic
structure of molecules. Reidel, Dortrecht, p 31

10. Paldus J (1992) In: Wilson S, Diercksen GHF (eds) Methods in
computational molecular Physics. NATO ASI Series B: Physics,
vol 293. Plenum, New York, p 99

11. BartlettRJ (1995) In: Yarkony DR (ed) Modern electronic structure

theory. World Scientific, Singapore, p 1047

NoLR L=

e

Paldus J, Li X (1999) Adv Chem Phys 110:1

. Urban M, NogaJ, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

Raghavachari K, Trucks GW, Pople JA, Head-Gordon M(1989)
Chem Phys Lett 157:479

. Arponen J (1983) Ann Phys (NY) 151:311

Kutzelnigg W (1977) In: Schaeffer III HF (ed) Modern theoretical
chemistry, vol 3a. Plenum, New York
Bartlett RJ, Kucharski SA, Noga J (1989) Chem Phys Lett 155:133

. Bartlett RJ, Noga J (1988) Chem Phys Lett 150:29

Kutzelnigg W (1998) Mol Phys 94:65
Voorhis TV, Head-Gordon M (2000) J Chem Phys 113:8873

. Kutzelnigg W (1991) Thoer Chim Acta 80:349
. Li X, Paldus J (2001) J Chem Phys 115:5759
. Kowalski K, Piecuch P (2000) J Chem Phys 113:18

Kowalski K, Piecuch P (2000) J Chem Phys 113:5644

. Piecuch P, Kowalski K, Pimienta ISO, McGuire MJ (2002) Int Rev

Chem Phys 21:527

. Kowalski K, Piecuch P (2004) J Chem Phys 120:1715
. Piecuch P, Kowalski K, Pimienta ISO, Fan P-D, Lodriguito M,

McGuire MJ, Kucharski SA, Kusacute T, Musial M (2004) Theor
Chem Acc 112:349

. Kucharski SA, Bartlett RJ (1998) J Chem Phys 108:9221

Meissner L, Bartlett RJ (2001) J Chem Phys 115:50
Malrieu J-P, Durand Ph, Dauday J-P (1985) J Phys A Math Gen
18:809

. Meller J, Malrieu J-P, Caballol R (1996) J Chem Phys 104:4068

Meissner L (1998) J Chem Phys 108:9227

. Mahapatra US, Datta B, Mukherjee D (1999) J Chem Phys

110:6171
Hubac I, Pittner J, Cérsky P (2000) J Chem Phys 112:8779

. Landau A, Eliav E, Kaldor U (1999) Chem Phys Lett 313:399

Jankowski K, Paldus J, Piecuch P (1991) Theor Chim Acta 80:223
Bendazzoli GL, Evangelisti S (1993) Int J Quantum Chem Quan-
tum Chem Symp 27:287

. Paldus J, Cizek J, Takahashi M (1984) Phys Rev A 30:2193

Piecuch P, Tobota R, Paldus J Phys Rev A 54:1210
Stolarczyk LZ (1994) Chem Phys Lett 217:1

. Paldus J, Planelles J (1994) Theor Chim Acta 89:13

. Li X, Paldus J (1997) J Chem Phys 107:6257

. Meissner L, Grabowski I (1999) Chem Phys Lett 300:53
. Li X, Paldus J (2003) J Chem Phys 118:2470

. Li X, Paldus J (1997) J Chem Phys 107:6257




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


